精品国产一区二区三区四区色_亚洲A无码一区二区三区_有码无码中文人妻视频_久久精品亚洲国产AV涩情

歡迎進(jìn)入有棱有角(上海)數(shù)字技術(shù)有限公司網(wǎng)站!
行業(yè)新聞

服務(wù)熱線13370266187

詳解5種金屬3D打印技術(shù)

作者:admin 發(fā)布時間:{dede:field name='pubdate'function='strftime("%Y-%m-%d %H:%M:%S",@me)'/}點擊:
3D打印技術(shù)正在快速改變傳統(tǒng)的生產(chǎn)方式和生活方式,作為戰(zhàn)略性新興產(chǎn)業(yè),美國、德國等發(fā)達(dá)國家高度重視并積極推廣該技術(shù)。當(dāng)然我國的3D打印技術(shù)也在不斷的發(fā)展,在2017年的達(dá)沃斯****中國國家主席就在發(fā)表題為《共擔(dān)時代責(zé)任 共促全球發(fā)展》的主旨演講中就提到3D打印、人工智能等新技術(shù)不斷涌現(xiàn),但尚未形成新的經(jīng)濟(jì)增長點。不少專家認(rèn)為,以數(shù)字化、網(wǎng)絡(luò)化、個性化、定制化為特點的3D打印技術(shù)為代表的新制造技術(shù)將推動第三次工業(yè)革命。金屬零件3D打印技術(shù)作為整個3D打印體系中最為前沿和最有潛力的技術(shù),是先進(jìn)制造技術(shù)的重要發(fā)展方向。隨著科技發(fā)展及推廣應(yīng)用的需求,利用快速成型直接制造金屬功能零件成為了快速成型主要的發(fā)展方向。目前可用于直接制造金屬功能零件的快速成型方法主要有:包括選區(qū)激光燒結(jié)(Selective Laser Sintering, SLS)技術(shù)、直接金屬粉末激光燒結(jié)(Direct  Metal  Laser Sintering,DMLS)、選區(qū)激光熔化(Selective Laser Melting, SLM)技術(shù)、激光近凈成形(Laser Engineered Net Shaping, LENS)技術(shù)和電子束選區(qū)熔化(Electron Beam Selective Melting, EBSM)技術(shù)等。
 
 
國外對金屬零件3D打印技術(shù)的理論與工藝研究相對較早。雖然我國在技術(shù)上落后于這些歐美大國,但是經(jīng)過這些年國內(nèi)的技術(shù)的不斷積累,一些廠家也都推出了自己的商品化的金屬3D打印機(jī),接下來小編就直接制造金屬功能零件的快速成型的主要方法進(jìn)行了歸納總結(jié)。
 
 
 
選區(qū)激光燒結(jié)(SLS) 
 
選擇性激光燒結(jié)技術(shù)(SLS)最初是由美國德克薩斯大學(xué)奧斯汀分校的Carl Deckard于1989年在其碩士論文中提出的, 選區(qū)激光燒結(jié),顧名思義,所采用的冶金機(jī)制為液相燒結(jié)機(jī)制,成形過程中粉體材料發(fā)生部分熔化,粉體顆粒保留其固相核心,并通過后續(xù)的固相顆粒重排、液相凝固粘接實現(xiàn)粉體致密化。美國DTM公司于1992年推出了該工藝的商業(yè)化生產(chǎn)設(shè)備SinterSation。德國的EOS公司在這一領(lǐng)域也做了很多研究工作,并開發(fā)了相應(yīng)的系列成型設(shè)備。國內(nèi)有如華中科技大學(xué)、南京航空航天大學(xué)、西北工業(yè)大學(xué)、中北大學(xué)和北京隆源自動成型有限公司等,多家單位進(jìn)行SLS的相關(guān)研究工作,也取得了重大成果。 
 
 
 
SLS 技術(shù)原理及其特點 
 
整個工藝裝置由粉末缸和成型缸組成,工作粉末缸活塞(送粉活塞)上升,由鋪粉輥將粉末在成型缸活塞(工作活塞)上均勻鋪上一層,計算機(jī)根據(jù)原型的切片模型控制激光束的二維掃描軌跡,有選擇地?zé)Y(jié)固體粉末材料以形成零件的一個層面。完成一層后,工作活塞下降一個層厚,鋪粉系統(tǒng)鋪上新粉,控制激光束再掃描燒結(jié)新層。如此循環(huán)往復(fù),層層疊加,直到三維零件成型。
 
 
 
SLS工藝采用半固態(tài)液相燒結(jié)機(jī)制,粉體未發(fā)生完全熔化,雖可在一定程度上降低成形材料積聚的熱應(yīng)力,但成形件中含有未熔固相顆粒,直接導(dǎo)致孔隙率高、致密度低、拉伸強(qiáng)度差、表面粗糙度高等工藝缺陷,在SLS 半固態(tài)成形體系中,固液混合體系粘度通常較高,導(dǎo)致熔融材料流動性差,將出現(xiàn) SLS 快速成形工藝特有的冶金缺陷——“球化”效應(yīng)。球化現(xiàn)象不僅會增加成形件表面粗糙度,更會導(dǎo)致鋪粉裝置難以在已燒結(jié)層表面均勻鋪粉后續(xù)粉層,從而阻礙SLS 過程順利開展。
 
由于燒結(jié)好的零件強(qiáng)度較低,需要經(jīng)過后處理才能達(dá)到較高的強(qiáng)度并且制造的三維零件普遍存在強(qiáng)度不高、精度較低及表面質(zhì)量較差等問題。在SLS出現(xiàn)初期,相對于其他發(fā)展比較成熟的快速成型方法,選擇性激光燒結(jié)具有成型材料選擇范圍廣,成型工藝比較簡單(無需支撐)等優(yōu)點。但由于成型過程中的能量來源為激光,激光器的應(yīng)用使其成型設(shè)備的成本較高,隨著2000 年之后激光快速成形設(shè)備的長足進(jìn)步(表現(xiàn)為先進(jìn)高能光纖激光器的使用、鋪粉精度的提高等),粉體完全熔化的冶金機(jī)制被用于金屬構(gòu)件的激光快速成形。選擇性激光燒結(jié)技術(shù)(SLS)已被類似更為先進(jìn)的技術(shù)代替。 
 
 
 
直接金屬激光成形(DMLS)
 
SLS制造金屬零部件,通常有兩種方法,其一為間接法,即聚合物覆膜金屬粉末的SLS;其二為直接法,即直接金屬粉末激光燒結(jié)(DirectMetalLaserSintering, DMLS)。自從1991年金屬粉末直接激光燒結(jié)研究在Leuvne的Chatofci大學(xué)開展以來,利用SLS工藝直接燒結(jié)金屬粉末成形三維零部件是快速原型制造的最終目標(biāo)之一。與間接SLS技術(shù)相比,DMLS工藝最主要的優(yōu)點是取消了昂貴且費時的預(yù)處理和后處理工藝步驟。  
 
 
 
直接金屬粉末激光燒結(jié)(DMLS)的特點  
 
DMLS技術(shù)作為SLS技術(shù)的一個分支,原理基本相同。但DMLS技術(shù)精確成形形狀復(fù)雜的金屬零部件有較大難度,歸根結(jié)底,主要是由于金屬粉末在DMLS中的“球化”效應(yīng)和燒結(jié)變形,球化現(xiàn)象,是為使熔化的金屬液表面與周邊介質(zhì)表面構(gòu)成的體系具有最小自由能,在液態(tài)金屬與周邊介質(zhì)的界面張力作用下,金屬液表面形狀向球形表面轉(zhuǎn)變的一種現(xiàn)象.球化會使金屬粉末熔化后無法凝固形成連續(xù)平滑的熔池,因而形成的零件疏松多孔,致使成型失敗,由于單組元金屬粉末在液相燒結(jié)階段的粘度相對較高,故“球化”效應(yīng)尤為嚴(yán)重,且球形直徑往往大于粉末顆粒直徑,這會導(dǎo)致大量孔隙存在于燒結(jié)件中,因此,單組元金屬粉末的DMLS具有明顯的工藝缺陷,往往需要后續(xù)處理,不是真正意義上的“直接燒結(jié)”。
 
為克服單組元金屬粉末DMLS中的“球化”現(xiàn)象,以及由此造成的燒結(jié)變形、密度疏松等工藝缺陷,目前一般可以通過使用熔點不同的多組元金屬粉末或使用預(yù)合金粉末來實現(xiàn)。多組分金屬粉末體系一般由高熔****屬、低熔****屬及某些添加元素混合而成,其中高熔****屬粉末作為骨架金屬,能在 DMLS 中保留其固相核心;低熔****屬粉末作為粘結(jié)金屬,在 DMLS 中熔化形成液相,生成的液相包覆、潤濕和粘結(jié)固相金屬顆粒,以此實現(xiàn)燒結(jié)致密化。
 
  
 
直接金屬粉末激光燒結(jié)(DMLS)的問題  
 
作為SLS技術(shù)的一個重要分支的DMLS技術(shù)尚處在不斷發(fā)展和完善的過程之中,其燒結(jié)的物理過程及燒結(jié)致密化機(jī)理仍不明了,不同金屬粉末體系的激光燒結(jié)工藝參數(shù)仍需摸索,專用粉末的研制與開發(fā)還有待突破。因此,建立金屬粉末直接激光燒結(jié)過程的數(shù)學(xué)、物理模型,定量研究DMLS燒結(jié)致密化過程中的燒結(jié)行為和組織結(jié)構(gòu)變化,成為粉末冶金科學(xué)與工程研究中的重要內(nèi)容之一。DMLS中,金屬粉末的物性對于燒結(jié)質(zhì)量有著及其重要的影響,相同的工藝參數(shù)條件下,不同的粉末體系的燒結(jié)效果往往有很大的區(qū)別。把握粉末體系的物性,為其選擇最優(yōu)化的工藝參數(shù),是DMLS的最基本、最重要的要求。大量研究表明,影響DMLS質(zhì)量的三個關(guān)鍵物性參數(shù)主要為:燒結(jié)特性、攤鋪特性和穩(wěn)定性。
 
 
 
選區(qū)激光熔化(SLM) 
 
SLM 的思想最初由德國Fraunhofer研究所于1995年提出,2002年該研究所對SLM 技術(shù)的研究取得巨大的成功。世界上第一臺SLM設(shè)備由英國MCP集團(tuán)公司下轄的德國 MCP-HEK 分公司已于 2003 年底推出。為獲取全致密的激光成形件,同時也受益于2000年之后激光快速成形設(shè)備的長足進(jìn)步(表現(xiàn)為先進(jìn)高能光纖激光器的使用、鋪粉精度的提高等),粉體完全熔化的冶金機(jī)制被用于金屬構(gòu)件的激光快速成形。例如,德國著名的快速成形公司EOS公司,是世界上較早開展金屬粉末激光燒結(jié)的專業(yè)化公司,主要從事SLS金屬粉末、工藝及設(shè)備研發(fā)。而該公司新近研發(fā)的EOSINTM270/280型設(shè)備,雖繼續(xù)沿用“燒結(jié)”這一表述,但已裝配200W光纖激光器,并采用完全熔化的冶金機(jī)制成形金屬構(gòu)件,成形性能得以顯著提高。目前,作為SLS技術(shù)的延伸,SLM術(shù)正在德國、英國等歐洲國家蓬勃發(fā)展。即便繼續(xù)沿用“選區(qū)激光燒結(jié)”(SLS)這一表述,實際所采用的成形機(jī)制已轉(zhuǎn)變?yōu)榉垠w完全熔化機(jī)制。 
 
 
 
選區(qū)激光熔化的原理  
 
SLM技術(shù)是在SLS基礎(chǔ)上發(fā)展起來的,二者的基本原理類似。SLM技術(shù)需要使金屬粉末完全熔化,直接成型金屬件,因此需要高功率密度激光器激光束開始掃描前,水平鋪粉輥先把金屬粉末平鋪到加工室的基板上,然后激光束將按當(dāng)前層的輪廓信息選擇性地熔化基板上的粉末,加工出當(dāng)前層的輪廓,然后可升降系統(tǒng)下降一個圖層厚度的距離,滾動鋪粉輥再在已加工好的當(dāng)前層上鋪金屬粉末,設(shè)備調(diào)入下一圖層進(jìn)行加工,如此層層加工,直到整個零件加工完畢。整個加工過程在抽真空或通有氣體保護(hù)的加工室中進(jìn)行,以避免金屬在高溫下與其他氣體發(fā)生反應(yīng)。SLM與DMLS的界限目前很模糊,區(qū)別不明顯, DMLS技術(shù)雖翻譯為金屬的燒結(jié),實際成型過程中多數(shù)時候已將金屬粉末完全熔化。DMLS技術(shù)使用材料都為不同金屬組成的混合物,各成分在燒結(jié)(熔化)過程中相互補(bǔ)償,有利于保證制作精度。而SLM技術(shù)使用材料主要為單一組分的粉末,激光束快速熔化金屬粉末并獲得連續(xù)的掃描線。  
 
 
 
選區(qū)激光熔化技術(shù)的發(fā)展問題 
 
激光選區(qū)成形件中,F(xiàn)e基合金(主要是鋼)SLM成形研究較多,但SLM成形工藝尚需優(yōu)化、成形性能尚需進(jìn)一步提高;對SLM成形性能(特別是占基礎(chǔ)地位的致密度),目前SLM成形的鋼構(gòu)件通常難以實現(xiàn)全致密。解決鋼材料SLM成形的致密化問題,是快速成形研究的關(guān)鍵性瓶頸問題。鋼材料激光成形的難度,主要取決于鋼中主要元素的化學(xué)特性?;w元素Fe及合金元素Cr對氧都具有很強(qiáng)的親和性,在常規(guī)粉末處理和激光成形條件下很難徹底避免氧化現(xiàn)象。因此,在SLM過程中,鋼熔體表面氧化物等污染層的存在,將顯著降低潤濕性,引起激光熔化特有的冶金缺陷球化效應(yīng)及凝固微裂紋,從而顯著降低激光成形致密度及相應(yīng)的機(jī)械性能。另一方面,鋼中C含量是決定激光成形性能的又一個關(guān)鍵因素。通常,過高的C含量將對激光成形性產(chǎn)生不利,隨C含量升高,熔體表面C元素層的厚度亦會增加。這與氧化層的不利影響類似,也會降低潤濕性,導(dǎo)致熔體鋪展性降低,并引起球化效應(yīng)。此外,在晶界上形成的復(fù)雜碳化物會增大鋼材料激光成形件的脆性。因此,通常對鋼材料SLM成形,需提高激光能量密度及SLM成形溫度,可促進(jìn)碳化物的溶解,也可使合金元素均勻化。
 
 
 
通過粉體材料及SLM工藝優(yōu)化,包括:
 
1,嚴(yán)格控制原始粉體材料及激光成形系統(tǒng)中的氧含量以改善潤濕性;
 
2,合理調(diào)控輸入激光能量密度以獲取適宜的液相粘度及其流變特性,可有效抑制球化效應(yīng)及微裂紋形成,進(jìn)而獲取近全致密結(jié)構(gòu)。
 
對于以Al合金為代表的輕合金零件激光快速成形,先前絕大多數(shù)研究報道是基于SLS半固態(tài)燒結(jié)成形機(jī)制,但因嚴(yán)重的球化效應(yīng)及孔隙缺陷,故研究進(jìn)展不大;而SLM技術(shù)可望為高性能復(fù)雜結(jié)構(gòu)Al合金零件近凈成形與快速制造提供嶄新的技術(shù)途徑。Al基合金零件SLM成形具有高難度,是由材料自身特殊物理特性本質(zhì)所決定的。一方面,,通常低功率CO2激光難以使Al合金粉體發(fā)生有效熔化,而要求使用能量密度更高的光纖或Nd:YAG激光,這無疑對激光器性能提出了更苛刻的要求。另一方面,Al合金材料熱導(dǎo)率高,SLM成形過程中激光能量輸入極易沿基板或在粉床中傳遞消耗,導(dǎo)致激光熔池溫度降低,熔體粘度增加且流動性降低,故其難以有效潤濕基體材料,導(dǎo)致SLM成形球化效應(yīng)及內(nèi)部孔隙、裂紋等缺陷。其三,從成形工藝角度,Al合金材料密度較低,粉體流動性差。 
 
需指出的是,基于SLM/SLRM成形機(jī)制,雖能在一定程度上改善激光成形件的致密度和表面光潔度,但因成形過程中粉末發(fā)生完全熔化/凝固,故在固液轉(zhuǎn)變過程中將出現(xiàn)明顯的收縮變形,致使成形件中積聚較大的熱應(yīng)力,并將在冷卻過程中得以釋放,使得成形件發(fā)生變形、甚至開裂。由于激光選區(qū)熔化成形技術(shù)成形粉末需求量大,需要在整個成形平面鋪設(shè)金屬粉末,因而不適宜成形貴重的金屬;整個成形平臺較大,惰性氣體保護(hù)效果較差,因而也不適宜成形易氧化的金屬粉末。
 
 
 
選區(qū)激光熔化技術(shù)的優(yōu)勢  
 
在原理上,選區(qū)激光熔化與選區(qū)激光燒結(jié)相似,但因為采用了較高的激光能量密度和更細(xì)小的光斑直徑,成型件的力學(xué)性能、尺寸精度等均較好,只需簡單后處理即可投入使用,并且成型所用原材料無需特別配制。選區(qū)激光熔化技術(shù)的優(yōu)點可歸納如下:
 
1.直接制造金屬功能件件,無需中間工序; 
 
2.良好的光束質(zhì)量,可獲得細(xì)微聚焦光斑,從而可以直接制造出較高尺寸精度和較好表面粗糙度的功能件;
 
3.金屬粉末完全熔化,所直接制造的金屬功能件具有冶金結(jié)合組織,致密度較高,具 有較好的力學(xué)性能,無需后處理;
 
4.粉末材料可為單一材料也可為多組元材料,原材料無需特別配制;
 
5.可直接制造出復(fù)雜幾何形狀的功能件;
 
6.特別適合于單件或小批量的功能件制造。
相關(guān)標(biāo)簽: